
Observing through the 
Turbulent Atmosphere

Andreas Quirrenbach
University of California, San Diego



Atmospheric Turbulence Andreas Quirrenbach 2

Plan of this Talk
! A few useful results from Fourier theory
! Motivation of the Kolmogorov model for 

turbulence
! Statistical description of Kolmogorov turbulence
! Wave propagation through turbulence
! Image formation by telescopes and the effect of 

turbulence on images
! Useful parameters that describe turbulence
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Convolution, Correlation, 
and Structure Function
! Convolution:

! Correlation:

! Covariance:

! Structure function:

! If g describes a homogeneous and isotropic 
process, Dg depends only on t ≡ |t1 � t2|, and 
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A few Important Results 
from Fourier Theory
! Convolution theorem

! Correlation theorem

! Wiener-Khinchin theorem

! Parseval�s theorem
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Turbulence Generation
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The Kolmogorov
Turbulence Model
! For atmospheric flows the Reynolds number      

Re ≡ VL / ν ≥ 106 ⇒ flow is highly turbulent
! Turbulent energy is generated on large scale L0, 

dissipated on small scale l0
! L0 is called outer scale, l0 is called inner scale
! In the inertial range between l0 and L0, there is a 

universal description for the turbulence spectrum
! The only two relevant parameters are the rate of 

energy generation ε and the kinematic viscosity ν
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The Structure Function of 
Kolmogorov Turbulence
! The units of ν are m2s-1, the dimensions of ε are 

Js-1kg-1 = m2s-3

! The velocity structure function can be written as

! The dimensions of α are m2s-2 ⇒
! The dimensions of β are m ⇒
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Completion of Dimensional 
Analysis
! In the inertial range dissipation plays no role  
⇒ dependence on ν must drop out

! This is possible only if 
! We can therefore write 

! The constant      describes the strength of the 
turbulence 
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Structure Function of the 
Refractive Index
! Turbulence carries �parcels� of air with 

different temperature
! The parcels are in pressure equilibrium and thus 

have different density and index of refraction
! The corresponding structure functions are

and

with
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The Power Spectrum of the 
Refractive Index
! The structure function D is related to the 

covariance B by
! The covariance B is the Fourier transform of the 

power spectral density Φ (Wiener-Khinchin
theorem)

! We can thus compute Φ from D
! For Kolmogorov turbulence the result is 
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The Effect of a Turbulent 
Layer
! We look at the propagation of a wavefront

through a turbulent layer of 
thickness δh at height h

! The phase shift produced by refractive index 
fluctuations is
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The Coherence Function of 
the Wavefront
! We will  need the coherence function of the 

wavefront

! Next goal: calculate Dφ(r)
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Expectation Value of 
Exponential
! Let χ be a Gaussian variable with zero mean 

and variance σ2
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Phase Covariance
! With

! For δh much larger than the correlation scale
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Computation of the Phase 
Structure Function
! [ ]
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The Wavefront Coherence 
Function
! For the layer under consideration we have 

obtained

! Integration over the whole atmosphere, and 
taking the zenith angle z into account gives
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The Fried Parameter r0
! We define the Fried parameter r0 by

! Now we can write

and
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Fraunhofer Diffraction
! The complex amplitude A of a wave ψ

diffracted at an aperture P with area Π can be 
computed from Huygens� principle

! In the far field A is thus given by

! With u ≡ x / λ we can write
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Optical Image Formation
! The intensity distribution in the focal plane 

(point spread function) is

! From the Wiener-Khinchin theorem we get

! Here we have introduced the telescope transfer 
function
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Resolving Power and 
Diffraction-Limited Images
! We define the resolving power R by

! In the absence of turbulence, B = 1, and

! The last equality holds for a circular aperture
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Seeing-Limited Images
! For strong turbulence T = 1 in the region where 

B is non-zero, and
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Significance of the Fried 
Parameter r0
! The resolution of long exposures through the 

atmosphere is the same as the resolution 
obtained with a telescope of diameter r0

! The phase variance over an aperture with 
diameter r0 is approximately 1 rad2

! r0 depends on the turbulence profile CN
2(h), the 

zenith angle z, and the observing wavelength λ
! The wavelength dependence is r0∝ λ6/5; this 

leads to an image size (�seeing�) α∝ λ/ r0 ∝ λ -1/5
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Typical Value of r0
! At good sites and under good conditions, r0 at 

500 nm is typically in the range 10�20 cm
! This corresponds to an image size of 0.5″ � 1″
! At any site, the night-to-night variations of r0

are large
! There are also short-term fluctuations on all 

time scales, which complicate the calibration of 
high-resolution observations
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The Strehl Ratio
! The quality of an imaging system is often 

measured by the Strehl ratio S, defined as the 
on-axis intensity in the actual image divided by 
the peak intensity in a diffraction-limited image

! For phase errors ≤ 2 rad, 
! The Hubble Space Telescope optics have S ≈ 0.1 

(without corrective optics)
! A telescope with diameter r0 delivers S = 0.37 

(without tip-tilt correction) 

[ ]2exp φσ−≈S
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Practical Consequences of 
Non-Perfect Strehl Ratio
! If S ≥ 0.1, image deconvolution software can 

usually be used to obtain diffraction-limited 
images, but the dynamic range is limited

! In an interferometer the visibility cannot be 
better than S

! The coupling efficiency into single-mode fibers 
is approximately equal to S

! For telescopes with size up to ~ 3r0 tip-tilt 
correction can dramatically improve S
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Taylor�s �Frozen Turbulence� 
Hypothesis and τ0
! It is frequently assumed that the time constant 

for changes in the turbulence pattern is much 
longer than the time it takes the wind to blow 
the turbulence past the telescope aperture

! Atmospheric turbulence is often dominated by 
a single layer

! The temporal behavior of the turbulence can 
therefore be characterized by a time constant 
τ0 ≡ r0 / v, where v is the wind velocity in the 
dominant layer
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Short and Long Exposures
! Observations with exposure time (so-

called �short exposures�) produce images 
through one instantaneous realization of the 
atmosphere (�speckle images�)

! Long exposures with            average over the 
atmospheric random process

! In an interferometer τ0 sets the time scale for 
detector readout or fringe tracking

0τ<<t
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Phase Variance between 
Rays from two Stars
! The rays �from� the telescope �to� two stars 

separated by an angle θ coincide at the pupil; at 
a distance d their separation is r = θ d = θ h sec z

! We insert this relation in

! The result is 
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Angular Anisoplanatism
! We define  

! Now we can write

! Anisoplanatism is dominated by high layers
! The short-exposure point spread functions for 

two stars separated by more than θ0 are different, 
but the long-exposure psf�s are (nearly) identical    
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Fresnel Length and 
Diffraction Effects
! The geometric optics approximation of 

propagation is only valid for paths shorter than 
the Fresnel propagation length

! For r0 = 10 cm, λ = 500 nm, the Fresnel length 
is 20 km

! The geometric approximation is therefore a 
good first-order approach, but diffraction is not 
negligible, especially at short wavelengths, 
large zenith angles, and poor observing sites 
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Scintillation
! Diffraction gives rise to scintillation, i.e., 

intensity fluctuations that are important for 
photometry if the exposure time is short

! The local intensity fluctuations are given by

! Scintillation is dominated by high-altitude 
turbulence

! For telescopes larger than the Fresnel scale              
, aperture averaging is important
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Turbulence Profiles
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Consequences for Optical / 
Infrared Interferometry
! Optical interferometers with telescopes larger 

than r0 need adaptive optics (tip-tilt correction 
only is sufficient up to 3r0)

! The search radius for dual-star interferometry is 
limited by anisoplanatism

! Null depth is limited by atmospheric residuals
! Fringe tracking servos or detector readouts 

must work on the atmospheric time scale
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Atmospheric Phase Noise 
and Fringe Tracking
! The power spectrum of atmospheric phase 

fluctuations (Kolmogorov approximation) is

! If H( f ) is the closed-loop fringe servo transfer 
function, the residual phase variance is given by

! Define the Greenwood frequency by
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Null Depth in the Presence 
of Phase Noise
! In many cases, the null depth due to residual 

phase fluctuations can be written as

! κ = 0.191 for sharp cutoff, κ = 1 for RC filter, 
κ = 28.4 for pure delay (loop lag)

! Detailed modeling of fringe tracking servo 
needed
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Numerical Estimate of 
Fringe Tracking Residuals
! Assume a servo with a 2 ms �pure delay�
! Assume fG = 21.35 Hz at λ = 500 nm 

(corresponds to r0 = 20 cm, v = 10 m/s)
! For these parameters the null depth is 6.3·10-3

at K band
! The null depth due to high-frequency fringe 

tracking residuals scales with λ-5/3
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